Correlation and Simple Regression Tables Template
Hypothesis Testing: Correlation and Simple
Regression
Assignment Overview
In this assignment, you are given data to determine the relationship between
pairs of variables.
Based on the descriptive data, you will choose the appropriate correlation
analysis and interpret the strength and direction of the correlation and its
statistical significance. Note: For some of the correlation pairs, it is appropriate to
examine the ability to predict one variable from the other.
To successfully complete this assignment, you must address the following:
● Describe the types of relationships that can occur between two variables.
● Determine which correlation analysis is appropriate, based on the type of
data collected.
● Describe the information that can be gleaned from a correlation analysis.
● Describe the role of linear regression analysis.
● Interpret a simple linear regression output.
Preparation for the Assignment
The following files must be downloaded from Resources to complete this
assignment:
● Correlation and Simple Regression Tables Template (includes Data
Description).
● Unit 8 SPSS Output [PDF].
Instructions for the Assignment
Step 1: Data Validation
As with all new data sets, your first step is to do the data validation.
● Review the Unit 8 SPSS Output [PDF] and note any issues with the data.
Step 2: Correlation
Establish the relationships of the variables using the following correlation
procedures. Based on your data validation, choose the appropriate correlation
coefficient and interpret the strength, direction, and significance of the correlation
for six variable pairs of your choice.
● Review both the Pearson correlations (parametric) and the Spearman
rank-order correlations.
Step 3: Simple Regression
● Interpret the appropriate simple regression results for your variables.
Additional Requirements
● Create a document that is clearly written and generally free of grammatical
errors.
u08a1 Correlation and Simple Regression Tables Template
Use this data description for both the correlation and the simple regression tables.
In the beginning of a health intervention program, the participants were given extensive measurements of body composition. These measurements were the following:
· Percentage of body fat (BODYFAT).
· Height (cm).
· Weight (kg).
· Circumference measures (cm) of the neck, chest, abdomen, hip, thigh, and biceps.
· BMI and Waist/Hip ratio were calculated, using the abdominal circumference as the waist.
· Age was also recorded.
For this study, no demographic information was recorded.
Correlation Table
Write out your six variables here. Change the name of variable x to the variable name. Enter the correlation coefficient in the cell. Use an asterisk (*) to label significant finds (p ( 0.05). Italicize Spearman correlation coefficients.
Variable 4 |
Variable 5 |
Variable 6 |
|
Variable 1 |
|||
Variable 2 |
|||
Variable 3 |
After you are done with the correlation table, you will chose the Weight, Abdomen, BMI, Waist/Hip Ratio, and Age variables to regress on BODYFAT on the following pages.
Report Results and Interpretation of Regression Analysis
Use the results of the regression analysis to predict the percentage of body fat if a person weighs 60 kg, has an abdominal circumference of 88 cm, a BMI of 22.6, and Waist/Hip ratio 1.3.
Regression Analysis Table
Regression of weight, abdomen, BMI, W/H ratio, and age on percentage of body fat:
R |
R2 |
SEE |
df |
F |
p |
b |
SE |
( |
t |
p |
L |
U |
|
Weight |
|||||||||||||
Abdomen |
|||||||||||||
BMI |
|||||||||||||
Waist/Hip ratio |
|||||||||||||
Age |
Interpretation of Regression
Predicted values of body fat percentage
Variable |
Known amount |
% Body fat’ (predicted) |
Weight (kg) |
60 |
|
Abdomen (cm) |
88 |
|
BMI (kg/m2) |
22.6 |
|
Waist/Hip ratio |
1.3 |
|
1
2
Page 1
Explore
Notes
Output Created 20-SEP-2017 13:57:26
Comments
Input Data /Users/Rick/Desktop/PU
B4009/spss/FAT.sav
Active Dataset DataSet1
Filter < n o n e >
Weight < n o n e >
Split File < n o n e >
N of Rows in Working
Data File
2 5 2
Missing Value Handling Definition of Missing User-defined missing
values for dependent
variables are treated as
missing.
Cases Used Statistics are based on
cases with no missing
values for any
dependent variable or
factor used.
Page 2
Notes
Syntax EXAMINE
VARIABLES=BODYFAT
AGE HEIGHT WEIGHT
NECK CHEST ABDOMEN
HIP THIGH BICEPS BMI
WAISTHIPRATIO
/PLOT NONE
/PERCENTILES
(5,10,25,50,75,90,95)
HAVERAGE
/STATISTICS
DESCRIPTIVES EXTREME
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.
Resources Processor Time 00:00:00.03
Elapsed Time 00:00:00.00
Page 3
Case Processing Summary
N
Valid
Percent N
Cases
Missing
Percent N
Total
Percent
BODYFAT 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
AGE 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
HEIGHT 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
WEIGHT 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
NECK 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
CHEST 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
ABDOMEN 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
HIP 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
THIGH 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
BICEPS 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
BMI 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
WAISTHIPRATIO 2 5 2 100.0% 0 0.0% 2 5 2 100.0%
178.9244 1.85134 Page 4
Descriptives
Statistic Std. Error
BODYFAT Mean 18.938 . 4 8 8 3
95% Confidence Interval
for Mean
Lower Bound 17.977
Upper Bound 19.900
5% Trimmed Mean 18.865
Median 19.000
Variance 60.076
Std. Deviation 7.7509
Minimum . 0
Maximum 4 5 . 1
Range 4 5 . 1
Interquartile Range 1 1 . 8
Skewness . 1 4 4 . 1 5 3
Kurtosis – . 3 0 7 . 3 0 6
AGE Mean 4 4 . 8 8 . 7 9 4
95% Confidence Interval
for Mean
Lower Bound 4 3 . 3 2
Upper Bound 4 6 . 4 5
5% Trimmed Mean 4 4 . 5 9
Median 4 3 . 0 0
Variance 158.811
Std. Deviation 12.602
Minimum 2 2
Maximum 8 1
Range 5 9
Interquartile Range 1 9
Skewness . 2 8 4 . 1 5 3
Kurtosis – . 4 1 6 . 3 0 6
Page 5
Descriptives
37.992 . 1 5 3 1
Statistic Std. Error
HEIGHT Mean 178.9244 1.85134
95% Confidence Interval
for Mean
Lower Bound 175.2783
Upper Bound 182.5706
5% Trimmed Mean 177.8604
Median 176.5000
Variance 863.723
Std. Deviation 29.38916
Minimum 118.50
Maximum 363.15
Range 244.65
Interquartile Range 3 8 . 5 0
Skewness 1 . 2 0 5 . 1 5 3
Kurtosis 5 . 2 7 0 . 3 0 6
WEIGHT Mean 70.1488 .23074
95% Confidence Interval
for Mean
Lower Bound 69.6944
Upper Bound 70.6032
5% Trimmed Mean 70.2837
Median 70.0000
Variance 13.417
Std. Deviation 3.66286
Minimum 2 9 . 5 0
Maximum 7 7 . 7 5
Range 4 8 . 2 5
Interquartile Range 4 . 0 0
Skewness – 5 . 3 8 5 . 1 5 3
Kurtosis 59.544 . 3 0 6
Page 6
Descriptives
92.556 . 6 7 9 3
Statistic Std. Error
NECK Mean 37.992 . 1 5 3 1
95% Confidence Interval
for Mean
Lower Bound 37.690
Upper Bound 38.294
5% Trimmed Mean 37.967
Median 38.000
Variance 5 . 9 0 9
Std. Deviation 2.4309
Minimum 3 1 . 1
Maximum 5 1 . 2
Range 2 0 . 1
Interquartile Range 3 . 1
Skewness . 5 5 3 . 1 5 3
Kurtosis 2 . 7 2 0 . 3 0 6
CHEST Mean 100.824 . 5 3 1 1
95% Confidence Interval
for Mean
Lower Bound 99.778
Upper Bound 101.870
5% Trimmed Mean 100.484
Median 99.650
Variance 71.073
Std. Deviation 8.4305
Minimum 7 9 . 3
Maximum 1 3 6 . 2
Range 5 6 . 9
Interquartile Range 1 1 . 3
Skewness . 6 8 2 . 1 5 3
Kurtosis . 9 8 7 . 3 0 6
Page 7
Descriptives
59.406 . 3 3 0 7
Statistic Std. Error
ABDOMEN Mean 92.556 . 6 7 9 3
95% Confidence Interval
for Mean
Lower Bound 91.218
Upper Bound 93.894
5% Trimmed Mean 92.130
Median 90.950
Variance 116.275
Std. Deviation 10.7831
Minimum 6 9 . 4
Maximum 1 4 8 . 1
Range 7 8 . 7
Interquartile Range 1 5 . 1
Skewness . 8 3 8 . 1 5 3
Kurtosis 2 . 2 4 9 . 3 0 6
HIP Mean 99.905 . 4 5 1 3
95% Confidence Interval
for Mean
Lower Bound 99.016
Upper Bound 100.794
5% Trimmed Mean 99.585
Median 99.300
Variance 51.324
Std. Deviation 7.1641
Minimum 8 5 . 0
Maximum 1 4 7 . 7
Range 6 2 . 7
Interquartile Range 8 . 1
Skewness 1 . 4 9 7 . 1 5 3
Kurtosis 7 . 4 7 1 . 3 0 6
Descriptives
23.456 . 4 3 5 9 Page 8
Statistic Std. Error
THIGH Mean 59.406 . 3 3 0 7
95% Confidence Interval
for Mean
Lower Bound 58.755
Upper Bound 60.057
5% Trimmed Mean 59.226
Median 59.000
Variance 27.562
Std. Deviation 5.2500
Minimum 4 7 . 2
Maximum 8 7 . 3
Range 4 0 . 1
Interquartile Range 6 . 5
Skewness . 8 2 1 . 1 5 3
Kurtosis 2 . 6 6 6 . 3 0 6
BICEPS Mean 32.273 . 1 9 0 3
95% Confidence Interval
for Mean
Lower Bound 31.899
Upper Bound 32.648
5% Trimmed Mean 32.257
Median 32.050
Variance 9 . 1 2 8
Std. Deviation 3.0213
Minimum 2 4 . 8
Maximum 4 5 . 0
Range 2 0 . 2
Interquartile Range 4 . 2
Skewness . 2 8 6 . 1 5 3
Kurtosis . 4 9 8 . 3 0 6
Page 9
Descriptives
Statistic Std. Error
BMI Mean 23.456 . 4 3 5 9
95% Confidence Interval
for Mean
Lower Bound 22.597
Upper Bound 24.314
5% Trimmed Mean 23.175
Median 23.085
Variance 47.877
Std. Deviation 6.9193
Minimum 5 . 5
Maximum 4 8 . 4
Range 4 3 . 0
Interquartile Range 9 . 2
Skewness . 5 8 7 . 1 5 3
Kurtosis . 5 5 9 . 3 0 6
WAISTHIPRATIO Mean . 9 2 4 5 .00372
95% Confidence Interval
for Mean
Lower Bound . 9 1 7 2
Upper Bound . 9 3 1 9
5% Trimmed Mean . 9 2 3 5
Median . 9 2 0 2
Variance . 0 0 3
Std. Deviation .05905
Minimum . 7 9
Maximum 1 . 1 0
Range . 3 1
Interquartile Range . 0 8
Skewness . 2 2 8 . 1 5 3
Kurtosis – . 1 6 5 . 3 0 6
Percentiles
Page 10
Percentiles
5 1 0 2 5 5 0 7 5 9 0 9 5
Weighted Average
(Definition 1)
BODYFAT 6 . 6 9 5 8 . 7 3 0 12.800 19.000 24.600 29.040 31.435
AGE 2 5 . 0 0 2 7 . 0 0 3 5 . 2 5 4 3 . 0 0 5 4 . 0 0 6 3 . 7 0 6 7 . 3 5
HEIGHT 136.0750 146.2250 158.5000 176.5000 197.0000 217.0000 227.1000
WEIGHT 65.7500 67.0000 68.2500 70.0000 72.2500 73.7500 74.5000
NECK 34.165 35.100 36.400 38.000 39.475 40.970 41.900
CHEST 88.765 90.890 94.250 99.650 105.525 112.370 117.175
ABDOMEN 76.565 79.430 84.525 90.950 99.575 105.910 111.305
HIP 89.065 91.800 95.500 99.300 103.575 108.800 112.540
THIGH 51.030 52.930 56.000 59.000 62.450 66.000 68.670
BICEPS 27.500 28.630 30.200 32.050 34.375 36.340 37.200
BMI 13.618 15.255 18.535 23.085 27.735 32.081 36.621
WAISTHIPRATIO . 8 3 1 6 . 8 4 7 0 . 8 8 6 0 . 9 2 0 2 . 9 6 3 4 1.0019 1.0309
Tukey’s Hinges BODYFAT 12.800 19.000 24.600
AGE 3 5 . 5 0 4 3 . 0 0 5 4 . 0 0
HEIGHT 158.7500 176.5000 197.0000
WEIGHT 68.2500 70.0000 72.2500
NECK 36.400 38.000 39.450
CHEST 94.300 99.650 105.450
ABDOMEN 84.550 90.950 99.450
HIP 95.500 99.300 103.550
THIGH 56.000 59.000 62.400
BICEPS 30.200 32.050 34.350
BMI 18.540 23.085 27.730
WAISTHIPRATIO . 8 8 6 0 . 9 2 0 2 . 9 6 3 3
Page 11
Extreme Values
1 8 2 118.50
Case Number Value
BODYFAT Highest 1 2 1 6 4 5 . 1
2 3 6 3 8 . 2
3 1 9 2 3 6 . 5
4 1 6 9 3 4 . 7
5 3 9 3 3 . 8
Lowest 1 1 8 2 . 0
2 1 7 2 1 . 9
3 1 7 1 4 . 1
4 2 6 4 . 6
5 2 9 4 . 7
AGE Highest 1 7 9 8 1
2 2 5 2 7 4
3 8 5 7 2
4 8 7 7 2
5 2 4 9 7 2a
Lowest 1 3 2 2
2 2 2 2
3 1 4 5 2 3
4 1 4 4 2 3
5 1 0 2 3b
HEIGHT Highest 1 3 9 363.15
2 4 1 262.75
3 3 5 247.25
4 1 9 2 244.25
5 1 5 2 241.75
Extreme Values
HEIGHT
3 9 1 3 6 . 2
Page 12
Case Number Value
Lowest 1 1 8 2 118.50
2 7 4 125.00
3 4 5 125.25
4 1 7 2 125.75
5 2 2 6 126.50
WEIGHT Highest 1 9 6 7 7 . 7 5
2 1 4 5 7 7 . 5 0
3 1 2 7 6 . 0 0
4 1 9 2 7 6 . 0 0
5 1 0 9 7 5 . 5 0
Lowest 1 4 2 2 9 . 5 0
2 2 1 6 6 4 . 0 0
3 7 4 6 4 . 0 0
4 2 9 6 4 . 7 5
5 3 6 6 5 . 0 0
NECK Highest 1 3 9 5 1 . 2
2 1 6 8 4 3 . 9
3 4 1 4 3 . 2
4 1 8 0 4 2 . 8
5 2 2 2 4 2 . 5
Lowest 1 1 0 6 3 1 . 1
2 4 5 3 1 . 5
3 4 9 3 2 . 8
4 7 4 3 3 . 2
5 2 2 6 3 3 . 4
Page 13
Extreme Values
1 8 2 8 5 . 0
Case Number Value
CHEST Highest 1 3 9 1 3 6 . 2
2 4 1 1 2 8 . 3
3 2 0 5 1 2 1 . 6
4 2 2 2 1 1 9 . 9
5 2 1 6 1 1 9 . 8
Lowest 1 1 8 2 7 9 . 3
2 5 0 8 3 . 4
3 4 5 8 5 . 1
4 2 3 8 6 . 0
5 2 4 8 6 . 7
ABDOMEN Highest 1 3 9 1 4 8 . 1
2 4 1 1 2 6 . 2
3 2 1 6 1 2 2 . 1
4 2 4 2 1 1 8 . 0
5 1 6 9 1 1 5 . 9
Lowest 1 1 8 2 6 9 . 4
2 5 0 7 0 . 4
3 1 5 3 7 2 . 8
4 4 7 7 3 . 7
5 2 9 7 3 . 9
HIP Highest 1 3 9 1 4 7 . 7
2 4 1 1 2 5 . 6
3 3 5 1 1 6 . 1
4 4 2 1 1 5 . 5
5 1 5 2 1 1 4 . 4 c
Extreme Values
HIP
1 8 2 4 8 . 4
Page 14
Case Number Value
Lowest 1 1 8 2 8 5 . 0
2 2 7 8 5 . 3
3 5 0 8 7 . 2
4 2 2 6 8 7 . 5
5 2 4 1 8 7 . 6
THIGH Highest 1 3 9 8 7 . 3
2 1 6 9 7 4 . 4
3 1 5 2 7 2 . 9
4 4 1 7 2 . 5
5 3 5 7 1 . 2 d
Lowest 1 1 8 2 4 7 . 2
2 5 3 4 9 . 3
3 2 4 8 4 9 . 6
4 1 7 2 5 0 . 0
5 4 5 5 0 . 0
BICEPS Highest 1 3 9 4 5 . 0
2 1 8 0 3 9 . 1
3 5 4 3 8 . 5
4 1 5 2 3 8 . 5
5 2 2 2 3 8 . 4
Lowest 1 1 7 2 2 4 . 8
2 2 2 6 2 5 . 3
3 2 4 8 2 5 . 6
4 1 4 9 2 5 . 8
5 5 1 2 6 . 0
Extreme Values
Page 15
Case Number Value
BMI Highest 1 1 8 2 4 8 . 4
2 4 5 4 3 . 4
3 2 2 6 4 1 . 7
4 1 7 2 4 1 . 4
5 5 0 4 1 . 1
Lowest 1 3 9 5 . 5
2 4 2 7 . 0
3 4 1 1 0 . 0
4 3 5 1 2 . 0
5 1 7 8 1 2 . 3
WAISTHIPRATIO Highest 1 2 5 0 1 . 1 0
2 5 9 1 . 0 9
3 2 1 6 1 . 0 8
4 2 0 5 1 . 0 6
5 4 0 1 . 0 5
Lowest 1 1 9 9 . 7 9
2 2 5 . 8 0
3 1 5 3 . 8 0
4 5 0 . 8 1
5 2 3 . 8 1
a. Only a partial list of cases with the value 72 are shown in the table of upper extremes.
b. Only a partial list of cases with the value 23 are shown in the table of lower extremes.
c. Only a partial list of cases with the value 114.4 are shown in the table of upper extremes.
d. Only a partial list of cases with the value 71.2 are shown in the table of upper extremes.
Scatter Graph Matrix f o r variables i n analysis
Notes
Output Created 20-SEP-2017 14:22:12
Comments
Input Data /Users/Rick/Desktop/PU
B4009/spss/FAT.sav
Active Dataset DataSet1
Filter < n o n e >
Weight < n o n e >
Split File < n o n e >
N of Rows in Working
Data File
2 5 2
Syntax GRAPH
/SCATTERPLOT
(MATRIX)=BODYFAT
HEIGHT WEIGHT NECK
CHEST ABDOMEN HIP
THIGH BICEPS BMI
WAISTHIPRATIO
AGE
/MISSING=LISTWISE.
Resources Processor Time 00:00:00.39
Elapsed Time 00:00:00.00
Page 16
Page 17
A
G
E
W
A
IS
T
H
IP
R
A
T
IO
B
M
I
B
IC
E
P
S
T
H
IG
H
H
IP
A
B
D
O
M
E
N
C
H
E
S
T
N
E
C
K
W
E
IG
H
T
H
E
IG
H
T
B
O
D
Y
F
A
T
B
M
I
H
IP
N
E
C
K
B
O
D
Y
F
A
T
Correlations Pearson
Notes
Output Created 20-SEP-2017 14:22:44
Comments
Input Data /Users/Rick/Desktop/PU
B4009/spss/FAT.sav
Active Dataset DataSet1
Filter < n o n e >
Weight < n o n e >
Split File < n o n e >
N of Rows in Working
Data File
2 5 2
Missing Value Handling Definition of Missing User-defined missing
values are treated as
missing.
Cases Used Statistics for each pair of
variables are based on
all the cases with valid
data for that pair.
Syntax CORRELATIONS
/VARIABLES=BODYFAT
HEIGHT WEIGHT NECK
CHEST ABDOMEN HIP
THIGH BICEPS BMI
WAISTHIPRATIO AGE
/PRINT=TWOTAIL
NOSIG
/MISSING=PAIRWISE.
Resources Processor Time 00:00:00.02
Elapsed Time 00:00:00.00
Page 18
. 4 9 3 * *
. 0 0 0
2 5 2
. 8 0 0 * *
. 0 0 0
2 5 2
. 2 0 8 * *
. 0 0 1
2 5 2
. 7 3 1 * *
. 0 0 0
2 5 2
. 7 2 8 * *
. 0 0 0
2 5 2
. 6 8 5 * *
. 0 0 0
2 5 2
. 7 3 9 * *
. 0 0 0
2 5 2
. 7 6 1 * *
. 0 0 0
2 5 2
. 4 9 3 . 8 0 0 . 2 0 8 . 7 3 1 . 7 2 8 . 6 8 5 . 7 3 9 . 7 6 1 1
Page 19
Correlations
BODYFAT
HEIGHT
WEIGHT
NECK
CHEST
ABDOMEN
HIP
THIGH
Pearson Correlation
BODYFAT
1
HEIGHT
. 6 1 3 * *
WEIGHT NECK
– . 0 8 9 . 4 9 1 * *
CHEST
. 7 0 3 * *
ABDOMEN
. 8 1 4 * *
HIP
. 6 2 6 * *
THIGH
. 5 6 1 * *
Sig. (2-tailed) . 0 0 0 . 1 5 8 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Pearson Correlation . 6 1 3 * * 1 . 3 0 8 * * . 8 3 1 * * . 8 9 4 * * . 8 8 8 * * . 9 4 1 * * . 8 6 9 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Pearson Correlation – . 0 8 9 . 3 0 8 * * 1 . 2 5 4 * * . 1 3 5 * . 0 8 8 . 1 7 0 * * . 1 4 8 *
Sig. (2-tailed) . 1 5 8 . 0 0 0 . 0 0 0 . 0 3 2 . 1 6 5 . 0 0 7 . 0 1 8
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Pearson Correlation . 4 9 1 * * . 8 3 1 * * . 2 5 4 * * 1 . 7 8 5 * * . 7 5 4 * * . 7 3 5 * * . 6 9 6 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Pearson Correlation . 7 0 3 * * . 8 9 4 * * . 1 3 5 * . 7 8 5 * * 1 . 9 1 6 * * . 8 2 9 * * . 7 3 0 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 3 2 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Pearson Correlation . 8 1 4 * * . 8 8 8 * * . 0 8 8 . 7 5 4 * * . 9 1 6 * * 1 . 8 7 4 * * . 7 6 7 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 1 6 5 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Pearson Correlation . 6 2 6 * * . 9 4 1 * * . 1 7 0 * * . 7 3 5 * * . 8 2 9 * * . 8 7 4 * * 1 . 8 9 6 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 7 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Pearson Correlation . 5 6 1 * * . 8 6 9 * * . 1 4 8 * . 6 9 6 * * . 7 3 0 * * . 7 6 7 * * . 8 9 6 * * 1
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 1 8 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
* * * * * * * * * * * * * * * *
1 – . 7 8 1 . 4 1 3 – . 0 4 1
Page 20
Correlations
WAISTHIPRATI
BODYFAT Pearson Correlation
BICEPS
. 4 9 3 * *
BMI
– . 6 6 8 * *
O
. 7 7 4 * *
AGE
. 2 8 9 * *
. 0 0 0
2 5 2
– . 0 1 3
. 8 4 0
2 5 2
– . 1 7 2 * *
. 0 0 6
2 5 2
. 1 1 4
. 0 7 2
2 5 2
. 1 7 6 * *
. 0 0 5
2 5 2
. 2 3 0 * *
. 0 0 0
2 5 2
– . 0 5 0
. 4 2 6
2 5 2
– . 2 0 0 * *
. 0 0 1
2 5 2
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2
HEIGHT Pearson Correlation . 8 0 0 * * – . 9 3 0 * * . 5 4 7 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2
WEIGHT Pearson Correlation . 2 0 8 * * – . 2 0 4 * * – . 0 2 8
Sig. (2-tailed) . 0 0 1 . 0 0 1 . 6 5 7
N 2 5 2 2 5 2 2 5 2
NECK Pearson Correlation . 7 3 1 * * – . 7 8 5 * * . 5 4 1 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2
CHEST Pearson Correlation . 7 2 8 * * – . 8 7 5 * * . 7 2 5 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2
ABDOMEN Pearson Correlation . 6 8 5 * * – . 8 6 4 * * . 8 2 7 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2
HIP Pearson Correlation . 7 3 9 * * – . 8 8 1 * * . 4 5 1 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2
THIGH Pearson Correlation . 7 6 1 * * – . 8 4 4 * * . 3 8 1 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2
* *
2 5 2
* *
Page 21
1
2 5 2
– . 7 8 1 * *
. 0 0 0
2 5 2
. 4 1 3 * *
. 0 0 0
2 5 2
– . 0 4 1
. 5 1 5
2 5 2
Correlations
BICEPS Pearson Correlation
BODYFAT
. 4 9 3 * *
HEIGHT
. 8 0 0 * *
WEIGHT
. 2 0 8 * *
NECK
. 7 3 1 * *
CHEST
. 7 2 8 * *
ABDOMEN
. 6 8 5 * *
HIP
. 7 3 9 * *
THIGH
. 7 6 1 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
BMI Pearson Correlation – . 6 6 8 * * – . 9 3 0 * * – . 2 0 4 * * – . 7 8 5 * * – . 8 7 5 * * – . 8 6 4 * * – . 8 8 1 * * – . 8 4 4 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
WAISTHIPRATIO Pearson Correlation . 7 7 4 * * . 5 4 7 * * – . 0 2 8 . 5 4 1 * * . 7 2 5 * * . 8 2 7 * * . 4 5 1 * * . 3 8 1 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 6 5 7 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
AGE Pearson Correlation . 2 8 9 * * – . 0 1 3 – . 1 7 2 * * . 1 1 4 . 1 7 6 * * . 2 3 0 * * – . 0 5 0 – . 2 0 0 * *
Sig. (2-tailed) . 0 0 0 . 8 4 0 . 0 0 6 . 0 7 2 . 0 0 5 . 0 0 0 . 4 2 6 . 0 0 1
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Page 22
Correlations
WAISTHIPRATI
BICEPS Pearson Correlation
BICEPS
1
BMI
– . 7 8 1 * *
O
. 4 1 3 * *
AGE
– . 0 4 1
. 5 1 5
2 5 2
– . 0 2 3
. 7 1 5
2 5 2
. 4 7 9 * *
. 0 0 0
2 5 2
1
2 5 2
Sig. (2-tailed) . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2
BMI Pearson Correlation – . 7 8 1 * * 1 – . 5 9 0 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2
WAISTHIPRATIO Pearson Correlation . 4 1 3 * * – . 5 9 0 * * 1
Sig. (2-tailed) . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2
AGE Pearson Correlation – . 0 4 1 – . 0 2 3 . 4 7 9 * *
Sig. (2-tailed) . 5 1 5 . 7 1 5 . 0 0 0
N 2 5 2 2 5 2
* * . Correlation is significant at the 0.01 level (2-tailed).
2 5 2
* . Correlation is significant at the 0.05 level (2-tailed).
Nonparametric Correlations Spearman
Page 23
Notes
Output Created 20-SEP-2017 14:22:44
Comments
Input Data /Users/Rick/Desktop/PU
B4009/spss/FAT.sav
Active Dataset DataSet1
Filter < n o n e >
Weight < n o n e >
Split File < n o n e >
N of Rows in Working
Data File
2 5 2
Missing Value Handling Definition of Missing User-defined missing
values are treated as
missing.
Cases Used Statistics for each pair of
variables are based on
all the cases with valid
data for that pair.
Syntax NONPAR CORR
/VARIABLES=BODYFAT
HEIGHT WEIGHT NECK
CHEST ABDOMEN HIP
THIGH BICEPS BMI
WAISTHIPRATIO AGE
/PRINT=SPEARMAN
TWOTAIL NOSIG
/MISSING=PAIRWISE.
Resources Processor Time 00:00:00.03
Elapsed Time 00:00:00.00
Number of Cases Allowed 209715 cases a
a. Based on availability of workspace memory
Correlations
Spearman’s rho BODYFAT Correlation Coefficient
BODYFAT HEIGHT
1 . 0 0 0 . 6 1 3 * *
WEIGHT
– . 0 0 8
NECK
. 4 9 1 * *
CHEST
. 6 7 3 * *
ABDOMEN
. 8 1 5 * *
HIP
. 6 1 2 * *
Sig. (2-tailed) . . 0 0 0 . 8 9 8 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
HEIGHT Correlation Coefficient . 6 1 3 * * 1 . 0 0 0 . 5 1 5 * * . 8 0 5 * * . 8 9 7 * * . 8 7 4 * * . 9 2 9 * *
Sig. (2-tailed) . 0 0 0 . . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
WEIGHT Correlation Coefficient – . 0 0 8 . 5 1 5 * * 1 . 0 0 0 . 3 2 1 * * . 2 5 8 * * . 2 1 9 * * . 4 2 1 * *
Sig. (2-tailed) . 8 9 8 . 0 0 0 . . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
NECK Correlation Coefficient . 4 9 1 * * . 8 0 5 * * . 3 2 1 * * 1 . 0 0 0 . 7 8 2 * * . 7 4 3 * * . 7 0 9 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
CHEST Correlation Coefficient . 6 7 3 * * . 8 9 7 * * . 2 5 8 * * . 7 8 2 * * 1 . 0 0 0 . 8 9 5 * * . 8 1 2 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
ABDOMEN Correlation Coefficient . 8 1 5 * * . 8 7 4 * * . 2 1 9 * * . 7 4 3 * * . 8 9 5 * * 1 . 0 0 0 . 8 4 5 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
HIP Correlation Coefficient . 6 1 2 * * . 9 2 9 * * . 4 2 1 * * . 7 0 9 * * . 8 1 2 * * . 8 4 5 * * 1 . 0 0 0
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 .
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
THIGH Correlation Coefficient . 5 4 4 * * . 8 3 7 * * . 3 3 3 * * . 6 4 9 * * . 7 2 0 * * . 7 3 4 * * . 8 7 8 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
* * * * * * * * * * * * * *
. 5 4 4 * *
. 0 0 0
2 5 2
. 8 3 7 * *
. 0 0 0
2 5 2
. 3 3 3 * *
. 0 0 0
2 5 2
. 6 4 9 * *
. 0 0 0
2 5 2
. 7 2 0 * *
. 0 0 0
2 5 2
. 7 3 4 * *
. 0 0 0
2 5 2
. 8 7 8 * *
. 0 0 0
2 5 2
1 . 0 0 0
.
2 5 2
. 4 9 3 . 7 8 2 . 3 0 2 . 6 9 5 . 7 4 0 . 6 7 3 . 7 3 6 . 7 3 6 * *
Page 24
. 7 3 6 1 . 0 0 0 – . 7 9 4 . 4 3 8 – . 0 4 4
Page 25
Correlations
Spearman’s rho BODYFAT Correlation Coefficient
THIGH BICEPS
. 5 4 4 * * . 4 9 3 * *
BMI
– . 6 5 4 * *
WAISTHIPRATI
O
. 7 7 2 * *
AGE
. 2 7 3 * *
. 0 0 0
2 5 2
– . 0 1 3
. 8 3 7
2 5 2
– . 2 3 0 * *
. 0 0 0
2 5 2
. 1 2 3
. 0 5 1
2 5 2
. 1 6 8 * *
. 0 0 8
2 5 2
. 2 2 1 * *
. 0 0 0
2 5 2
– . 0 7 2
. 2 5 5
2 5 2
– . 2 0 3 * *
. 0 0 1
2 5 2
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2
HEIGHT Correlation Coefficient . 8 3 7 * * . 7 8 2 * * – . 9 9 3 * * . 5 7 7 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2
WEIGHT Correlation Coefficient . 3 3 3 * * . 3 0 2 * * – . 4 2 0 * * – . 0 2 5
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 6 9 1
N 2 5 2 2 5 2 2 5 2 2 5 2
NECK Correlation Coefficient . 6 4 9 * * . 6 9 5 * * – . 8 1 1 * * . 5 7 0 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2
CHEST Correlation Coefficient . 7 2 0 * * . 7 4 0 * * – . 9 2 0 * * . 7 2 2 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2
ABDOMEN Correlation Coefficient . 7 3 4 * * . 6 7 3 * * – . 9 0 0 * * . 8 5 8 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2
HIP Correlation Coefficient . 8 7 8 * * . 7 3 6 * * – . 9 3 1 * * . 4 7 6 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2
THIGH Correlation Coefficient 1 . 0 0 0 . 7 3 6 * * – . 8 4 9 * * . 3 9 4 * *
Sig. (2-tailed) . . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2
* *
2 5 2 2 5 2
* *
2 5 2
* *
Correlations
BICEPS
BMI
WAISTHIPRATIO
AGE
Correlation Coefficient
BODYFAT HEIGHT
. 4 9 3 * * . 7 8 2 * *
WEIGHT
. 3 0 2 * *
NECK
. 6 9 5 * *
CHEST
. 7 4 0 * *
ABDOMEN
. 6 7 3 * *
HIP
. 7 3 6 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Correlation Coefficient – . 6 5 4 * * – . 9 9 3 * * – . 4 2 0 * * – . 8 1 1 * * – . 9 2 0 * * – . 9 0 0 * * – . 9 3 1 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Correlation Coefficient . 7 7 2 * * . 5 7 7 * * – . 0 2 5 . 5 7 0 * * . 7 2 2 * * . 8 5 8 * * . 4 7 6 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 6 9 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Correlation Coefficient . 2 7 3 * * – . 0 1 3 – . 2 3 0 * * . 1 2 3 . 1 6 8 * * . 2 2 1 * * – . 0 7 2
Sig. (2-tailed) . 0 0 0 . 8 3 7 . 0 0 0 . 0 5 1 . 0 0 8 . 0 0 0 . 2 5 5
N 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 2
Spearman’s rho
. 7 3 6 * *
. 0 0 0
2 5 2
– . 8 4 9 * *
. 0 0 0
2 5 2
. 3 9 4 * *
. 0 0 0
2 5 2
– . 2 0 3 * *
. 0 0 1
2 5 2
Page 26
Page 27
Spearman’s rho
Correlations
BICEPS Correlation Coefficient
THIGH BICEPS
. 7 3 6 * * 1 . 0 0 0
BMI
– . 7 9 4 * *
WAISTHIPRATI
O
. 4 3 8 * *
AGE
– . 0 4 4
. 4 8 6
2 5 2
– . 0 1 4
. 8 2 9
2 5 2
. 4 5 3 * *
. 0 0 0
2 5 2
1 . 0 0 0
.
2 5 2
Sig. (2-tailed) . 0 0 0 . . 0 0 0 . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2
BMI Correlation Coefficient – . 8 4 9 * * – . 7 9 4 * * 1 . 0 0 0 – . 6 1 5 * *
Sig. (2-tailed) . 0 0 0 . 0 0 0 . . 0 0 0
N 2 5 2 2 5 2 2 5 2 2 5 2
WAISTHIPRATIO Correlation Coefficient . 3 9 4 * * . 4 3 8 * * – . 6 1 5 * * 1 . 0 0 0
Sig. (2-tailed) . 0 0 0 . 0 0 0 . 0 0 0 .
N 2 5 2 2 5 2 2 5 2 2 5 2
AGE Correlation Coefficient – . 2 0 3 * * – . 0 4 4 – . 0 1 4 . 4 5 3 * *
Sig. (2-tailed) . 0 0 1 . 4 8 6 . 8 2 9 . 0 0 0
N
* * . Correlation is significant at the 0.01 level (2-tailed).
2 5 2 2 5 2 2 5 2 2 5 2
Regression WEIGHT O N BODYFAT
Notes
Output Created 20-SEP-2017 15:35:59
Comments
Input Data /Users/Rick/Desktop/PU
B4009/spss/FAT.sav
Active Dataset DataSet1
Filter < n o n e >
Weight < n o n e >
Split File < n o n e >
N of Rows in Working
Data File
2 5 2
Missing Value Handling Definition of Missing User-defined missing
values are treated as
missing.
Cases Used Statistics are based on
cases with no missing
values for any variable
used.
Syntax REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF
OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05)
POUT(.10)
/NOORIGIN
/DEPENDENT
BODYFAT
/METHOD=ENTER
WEIGHT.
Resources Processor Time 00:00:00.02
Elapsed Time 00:00:00.00
2848 bytes
Page 28
Page 29
Notes
Memory Required
Additional Memory
Required for Residual
Plots
2848 bytes
0 bytes
Resources
Variables Entered/Removed a
Variables Variables
Model Entered Removed Method
1 WEIGHTb . Enter
a. Dependent Variable: BODYFAT
b. All requested variables entered.
Model Summary
Adjusted R Std. Error of
Model R R Square Square the Estimate
1 . 0 8 9 a . 0 0 8 . 0 0 4 7.7354
a. Predictors: (Constant), WEIGHT
Page 30
ANOVAa
Model
Sum of
Squares df Mean Square F Sig.
1 Regression 119.727 1 119.727 2 . 0 0 1 . 1 5 8 b
Residual 14959.290 2 5 0 59.837
Total 15079.017 2 5 1
a. Dependent Variable: BODYFAT
b. Predictors: (Constant), WEIGHT
Coefficientsa
Unstandardized Coefficients
Standardized
Coefficients 95.0% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound Upper Bound
1 (Constant) 32.165 9 . 3 6 3 3 . 4 3 5 . 0 0 1 13.724 50.607
WEIGHT – . 1 8 9 . 1 3 3 – . 0 8 9 – 1 . 4 1 5 . 1 5 8 – . 4 5 1 . 0 7 4
a. Dependent Variable: BODYFAT
REGRESSION PLOT OF WEIGHT O N BODYFAT
Page 31
Notes
Output Created 20-SEP-2017 15:36:33
Comments
Input Data /Users/Rick/Desktop/PU
B4009/spss/FAT.sav
Active Dataset DataSet1
Filter < n o n e >
Weight < n o n e >
Split File < n o n e >
N of Rows in Working
Data File
2 5 2
Notes
Syntax GGRAPH
/GRAPHDATASET
NAME=”graphdataset”
VARIABLES= BODYFAT
WEIGHT
/GRAPHSPEC
SOURCE=INLINE.
BEGIN GPL
SOURCE: s=userSource
(id(“graphdataset”) )
DATA: BODYFAT = col
(source(s), name
(“BODYFAT”) )
GRAPH: begin(origin
(15%, 10%), scale(75%,
75%))
DATA: WEIGHT = col
(source(s), name
(“WEIGHT”) )
GUIDE: axis(dim(1),
label(“WEIGHT”) )
GUIDE: axis(dim(2),
label(“BODYFAT”) )
ELEMENT: point(position
(WEIGHT * BODYFAT) )
ELEMENT: line(position
(smooth.linear(WEIGHT *
BODYFAT)), shape
(shape.solid) )
GRAPH: end()
GRAPH: begin(origin
(15%, 0%), scale(75%,
8%))
GUIDE: axis(dim(1), ticks
(null()))
COORD: rect(dim(1))
ELEMENT: schema
(position(bin.quantile.
letter(WEIGHT)), size
(size.”80%”))
GRAPH: end()
GRAPH: begin(origin
(92%, 10%), scale(8%,
75%))
COORD: transpose(rect
(dim(1)))
GUIDE: axis(dim(1), ticks
(null()))
ELEMENT: schema
(position(bin.quantile.
letter(BODYFAT)), size
(size.”80%”))
GRAPH: end()
END GPL.
00:00:00.34
Page 32
Page 33
Notes
Resources Processor Time 00:00:00.34
Elapsed Time 00:00:01.00
WEIGHT
8 0 . 0 07 0 . 0 06 0 . 0 05 0 . 0 04 0 . 0 03 0 . 0 02 0 . 0 0
B
O
D
Y
F
A
T
5 0 . 0
4 0 . 0
3 0 . 0
2 0 . 0
1 0 . 0
. 0
Regression Abdomen on bodyfat
Notes
Output Created 20-SEP-2017 16:05:35
Comments
Input Data /Users/Rick/Desktop/PU
B4009/spss/FAT.sav
Active Dataset DataSet1
Filter < n o n e >
Weight < n o n e >
Split File < n o n e >
N of Rows in Working
Data File
2 5 2
Missing Value Handling Definition of Missing User-defined missing
values are treated as
missing.
Cases Used Statistics are based on
cases with no missing
values for any variable
used.
Syntax REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF
OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05)
POUT(.10)
/NOORIGIN
/DEPENDENT
BODYFAT
/METHOD=ENTER
ABDOMEN.
00:00:00.01
Page 34
Page 35
Notes
Resources Processor Time 00:00:00.01
Elapsed Time 00:00:00.00
Memory Required 2848 bytes
Additional Memory
Required for Residual
Plots
0 bytes
Variables Entered/Removed a
Variables Variables
Model Entered Removed Method
1 ABDOMENb . Enter
a. Dependent Variable: BODYFAT
b. All requested variables entered.
Model Summary
Adjusted R Std. Error of
Model R R Square Square the Estimate
1 . 8 1 4 a . 6 6 2 . 6 6 1 4.5144
a. Predictors: (Constant), ABDOMEN
ANOVAa
Model
Sum of
Squares df Mean Square F Sig.
1 Regression 9984.086 1 9984.086 489.903 . 0 0 0 b
Residual 5094.931 2 5 0 20.380
Total 15079.017 2 5 1
a. Dependent Variable: BODYFAT
b. Predictors: (Constant), ABDOMEN
Page 36
Coefficientsa
Unstandardized Coefficients
Standardized
Coefficients 95.0% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound Upper Bound
1 (Constant) – 3 5 . 1 9 7 2 . 4 6 2 – 1 4 . 2 9 4 . 0 0 0 – 4 0 . 0 4 6 – 3 0 . 3 4 7
ABDOMEN . 5 8 5 . 0 2 6 . 8 1 4 22.134 . 0 0 0 . 5 3 3 . 6 3 7
a. Dependent Variable: BODYFAT
Regression Graph
Page 37
Notes
Output Created 20-SEP-2017 16:06:27
Comments
Input Data /Users/Rick/Desktop/PU
B4009/spss/FAT.sav
Active Dataset DataSet1
Filter < n o n e >
Weight < n o n e >
Split File < n o n e >
N of Rows in Working
Data File
2 5 2
Notes
Syntax GGRAPH
/GRAPHDATASET
NAME=”graphdataset”
VARIABLES= BODYFAT
ABDOMEN
/GRAPHSPEC
SOURCE=INLINE.
BEGIN GPL
SOURCE: s=userSource
(id(“graphdataset”) )
DATA: BODYFAT = col
(source(s), name
(“BODYFAT”) )
GRAPH: begin(origin
(15%, 10%), scale(75%,
75%))
DATA: ABDOMEN = col
(source(s), name
(“ABDOMEN”) )
GUIDE: axis(dim(1),
label(“ABDOMEN”) )
GUIDE: axis(dim(2),
label(“BODYFAT”) )
ELEMENT: point(position
(ABDOMEN * BODYFAT) )
ELEMENT: line(position
(smooth.linear
(ABDOMEN * BODYFAT)),
shape(shape.solid) )
GRAPH: end()
GRAPH: begin(origin
(15%, 0%), scale(75%,
8%))
GUIDE: axis(dim(1), ticks
(null()))
COORD: rect(dim(1))
ELEMENT: schema
(position(bin.quantile.
letter(ABDOMEN)), size
(size.”80%”))
GRAPH: end()
GRAPH: begin(origin
(92%, 10%), scale(8%,
75%))
COORD: transpose(rect
(dim(1)))
GUIDE: axis(dim(1), ticks
(null()))
ELEMENT: schema
(position(bin.quantile.
letter(BODYFAT)), size
(size.”80%”))
GRAPH: end()
END GPL.
00:00:00.23
Page 38
Page 39
Notes
Resources Processor …